I\C/Iarlo'l\'/lu?:zi i CO nfi g u rative
Programming

Abstract

The “Configurative Programming” is the proposal @hew
paradigm to develop software based on the ideaapplications
can be realized without the formalisms and thesdgpical of
the traditional programming languages, in generahthin of the
professional developers, preferring an approactht theesees to
configure a software environment potentially usaiy whoever
instead knows how to use a computer. This paradkgihtates
the activities of software development and masrer because
it favours the direct participation of the customéo the
software production and simplifies the distributi&md the use of
the realized code.

www.configurativeprogramming.org

Copyright © Carlo Muzzi, Maurizio Caramellino 20@809. All rights reserved.

“Configurative Programming” is the English trangatof the original Italian version entitled “Pr@gnmazione Configurativa”.

Last significant revision August 2007. Digitallyipted in Italy.

This document is protected from the internatiopgislations on the copyright. The reproductiontiphor complete, it is allowed only if
the title and the authors are mentioned. All cagiyis or trademarks mentioned in the text are tbpeaty of their respective owners.

The information contained or expressed in this duoet, as well as the theories proposed, have hdgecs to careful checks; the authors
are available to correct any inaccuracies. Therié&tion and data on this document is provided otAasris, As Available" basis without
warranty of any kind. You accept all risks and eggpbility for losses, damages, costs and othesequences resulting directly or
indirectly from using this document and any infotima or material available from it.

The authors disclaims all responsibility (includinghegligence) for all consequences of any peastimg, or refraining from acting, in
reliance on information contained in this document.

URL: http://www.configurativeprogramming.org
E-mail: authors@configurativeprogranmming. org

Configurative Programming

Introduction

In the first section of this treatise we brieflyafievith the evolution of the programming languagasderlining the
meaningful improvements gotten at every single sfejhe evolutionary process and comparing thedaggs with the
different methodologies proposed for the managemérthe software life cycle. On the basis of thislgsis we
expose, in the second section, the motivationsitlre¢ conducted us to define this new programmarggigm.

In the third section we introduce the proposed ragitic model as the theoretical base of this nevagigm, discussing
the principles of it and analyzing the improvementsoduced in the production of the software. hia fourth section
we potentially treat of how such paradigm allowsiadine different programming languages, also ahowo extend
the community of the developers, particularly wél wkplain how these languages will simplify and kadaster the
software development activities and the softwareteaance activities.

The fifth section analyzes the first programminggaage defined with this new model, illustratingthwparticular
emphasis, the choices that have conducted to tfimitde of the most meaningful elements. We wibbnzlude
discussing some perspectives offered by the corstowe programming.

| - The evolutionary process of the programming laguages

The programming has been one of the principal avéagidy of the computer science for a long timahe last eighty
years the different theoretical approaches usede heonducted to the definitions of different paraag and
programming languages.

Initially, when still the famous computers did rtist the way they do today, scientific communitgswpredominantly

focused on the determination of the basic prinsiglieInformation Science. As in that period thelggophical aspects
of the subject began to be framed inside matheaiatiodels of reference, it was natural that algoajproaches to the
programming were also them primarily directed tdhmenatical models type.

The Turing Machinesproposed by A.M. Turing, really constituted the typical emple of a machine (or computer)
meant to perform different algorithms but, typigalihside a predominantly mathematical field of leggdion; in fact,
Turing machine used some numerical systems to septehe treated information, the state assumed afery single
activity it turns and the instructions that couls ferformed.

For the purpose of this treatise it is not necessardeepen the basis of the theory of computatiostead it is
remarkable to consider an important consequendbese ideal machines: Turing pointed out that is wassible to
invent a more general single machine, calledsersal computing machinable to simulate the activities of one any
other Turing machine.

The idea that a calculator could be programmedkihinof working on another calculator introduce@ ttoncept of
abstraction that allowed to avoid the use of thehitee languages, also namkedv-level languagesreplacing them
with formal languages of higher level. It is knottrat the first calculators were programmed direptlyducing code in
binary (the code was written with the so-calfedt generation languagesr 1GL) the following developments led to
the use of symbolic languages assembly language@efinedsecond generation languages 2GL), in which the
binary strings were replaced by correspondentsigéxdymbols: as examples of symbolic languages avencention
IBM BALandVAX Macro.

The use of the symbolic languages induced howevaessubstantial problems: the programs were alwaigggs for
the family of calculators that had to perform theherefore they were dependent on a specific haweesides the
programmer worked with tiresome mental operatitias were different from those typically used by llignan beings.

In the period between the years '50s and the yé8ssexperts exerted themselves trying to findtswis to such
problems; these efforts were concretized in théndefn of different programming languages, eachsthyturned to
specific application areas of the real world, thatl in common a lexicon and a syntax nearer tdtiman level: for
this reason defined &sgh-level languages

These languages (known also343L or third generation languaggsypically used key words and codes derived by the
English language, in such way the source codes mere easily legible and comprehensible by a huptagrammer
but naturally they could not be processed by a ederpwithout a translation in its specific machliaaguage that had
to happen preventively or during the executiontiaily the translation was realized in executiomdi through a
component (calleéhterprete) who translated in the specific code machine; sgbently, the necessity of making the

i According to a conjecture of A. Church, note asi€h's Thesis, the class of the problems that cbeldymbolized and solved with a Turing
machine corresponded to the class of the computabiions; in effects the same Turing showed ashtiiting problem was not solvable: a
Turing machine would be able not to answer if aapthachine will arrest him or less.

ii In the succession of this treatise we will segous classification of some programming languagésce also the languages as the other
softwares, endure periodic revisions and updatihgsuld happen that different versions of a séanguage belong to different families.

-2

Configurative Programming

execution time faster and improving the abstracpoocess, led to the definition of tkempilerconcept: a dedicated
instrument that it allowed a translation that camecuted, in optimized way, one single time betbesexecution.

The high-level languages are also known as direttietthe assignmentask-orientedl that is with reference to the
environment in which the programmers would have teadperate; from this approach it derived a cfasgion of the
languages in three great families still used today:

« theimperative languagem which writing some code means to instruct tamputer on “what to do” and “what to
get”; the program is constituted by a sequencestfuctions to be performed in pre-arranged oritheough flow
instructions, that they change the content of tleenory of the computer (assignment of variablesaglpassage
of parameters). In this class we find the more comrhistorical languages, the ALGOL and the FORTAN
dedicated to the scientific calculation and paféidy used by mathematical, physical, astronoméits; COBOL
for managerial type applications; the Pascal, tASIE and the Modula-2 used in education field; @dor the
operating systems and the games; the Ada used iftiargn applications, critical mission, embeddedstgyms,
communication, CAD and finance;

« the functional languageaused for the pure functional calculation; basedtlom use of functions that recall
(recursion) or call other functions. They don't uke traditional concept of assignment of valuevddables
because the main data structure is the list. Tisé lo@wn language of this class is the LISP, paldity used in
the artificial intelligence, in the military appéitons and in the world education, especially fisr peculiar
characteristic: that allows the direct implememtatin a program of the computational model of Xhealculation
of Church;

» thelogical said declaratory languagesiso because to the program is expected to deratmghe truth of an
assertion; the source code is constituted by aseiffi assertions of facts and rules without neciggaeviously
specifying the flow of execution, it will be theqgram to look for it according to the suitable alijee. These
languages don't have a specific field of applicatiat they are particularly valid to solve problethat concern
entity and relationships; the PROLOG is the mostvkm declaratory language.

For the goals of our treatment it is important éemsider the cultural hinterland in which the pragnaing of the time
was developed; in that period prevailing necessig to have formalisms that allowed to easily skaneng different
programmers what realized by a single componemta# therefore necessary to simplify the activitynaintenance of
the code and to guarantee the retention of the kmow: the requirement to render the developmenvigciof the
software less subjective lead to the definitiospécific methodologies of work.

At the end of 60 years' the software developmegabdo be considered nearly like industrial agtivihe necessity to
make to cooperate different programmers on the sanoject was implemented using typical methodolegié the
industrial world of the time. Particularly the nel@velopment methodologies introduced were basdati@ooncept of
module; the process of software development startddthe approach to decompose the initial problemmore parts
or modules, each one developed independently flwamother, that at last they were recomposed imglssifinal
product. This model of software development wasneefwaterfall model and, within the theory of the languages, it
introduced the concepts of the date hiding, ofetheapsulation and of the structured programming.

The objective of the structured programming wasitaplify the writing of the code forcing the progmener to use few
structures of control that guaranteed one entrgtpoid one exit point; these object were reacherigh programming
languages that, implementing the principles of tiheorem of Béhm-Jacopihiavoided the deleterious use of the
unconditioned jump (gotd from which derived the harmful phenomenon of $pmt) code. ALGOL, Pascal, Modula-
32, C, Ada they are some examples of structuregliages.

A salient aspect of this new approach to the prmognang is the less importance given to the programyntanguage
used as opposed to a greater attention towards thestratetures and the algorithms used to computegzeroblem;

the data and the algorithms could be considereddi@pendent from the formalisms that every speddfiguage used
in order to implement them, therefore the programsniead to dedicate greater attention to them imerotd obtain a
better code.

The structured programming was therefore a thaalethodel that had to lead to the realization ofdyt code; but the
real experience demonstrated that the developawa®f did not always satisfy the expectations @f tastomers.
Until the half of ‘80s the common opinion was tkia cause of such inaccuracy derived from erronsnsitted in one

of the various phasgof software development; therefore greater emghass given to the adopted methodology of
development .

i The typical approach previewed that the macro-aiets/of analysis, plan and development ulteriavigre subdivided in: study of feasibility,
collection of requirement, analysis, planning, depment, testing and put in exercise.

Configurative Programming

As the waterfall model used an approach in mores@han which one could pass to the following phaisky after
having concluded and validated the previous oneai obvious that an error in the phasmused errors in all the
phases from ther1 onwards. It was decided therefore to usetreodet in which the macro-activity of analysis, plan
and development they were faced from the geneval te the particular level (in descending sensa) subsequently
verified from the particular level to the genem¥él (in ascending sense): in this way they hopegtdluce the errors
because the activities near the customers, comsideore subject to error, were verified before.

Likewise to the methodological processes also ttegnamming languages had an evolution: the demandse
instructions with formalisms nearer to the humamguage led to the creation of thoairth generation languages
4GL: particularly useful in the scripting and the laages of interaction with the database.

Despite the corrective interventions on languagesraethodologies, the real experience continuatktoonstrate that
the phenomenon of the software not in compliancth lie users’ expectations still existed; that ¢oced the

scientific community to accept the idea that it wapossible to realize a code that could totallysfathe expectations
of the customers: for many it became clear thatpitozess of software development was intrinsicatlyuncertain

activity. To face this new awareness was thougimaée to again evolve the methodologies, proposeawg models of
reference, each able to face the uncertainty dépgrah the specific necessities of the applicatiomain that the
software required.

Theincremental deliverywith its evolutiond, constituted a valid approach for those realities wanted to receive as
soon as possible a part of the expected solutiensoftware was realized and delivered to singlegs. Instead in the
situations in which the technological uncertairttgahabited with the uncertainty of requirementvéés proposed the
prototyping modéf based on the preventive creation of a prototypefinal solution on which to deepen discussions
and analysis.

The models proposed by the literature, from theeviall type to the prototyping, also articulatingdifferent way the
phases of the development process used always & saguential approach; however some applicatiddsfiexisted
(multimediality, operating systems, simulation misd#f natural phenomenons, control of productiomcpsses, etc.) in
which it was not possible to follow a sequentigbyach. For these cases 8pgral model' was proposed: this model
was created on the presupposition that all the mesthée elements of the project were carried onarafel as long as
they reached a specific moment (defimailestong in which all the actors involved in the projectchto analyze how
much realized and make any correction; the devedmpmprocess was cyclical because after the firktstane all the
activities had to restart again, always in parallgd to the new point of milestone. This model wa#led “spiral”
because to every cycle the error margin stretobedduce itself until converging towards one optiszution.

From the point of view of the theory of the langeaghese models brought to the definition of thexgigm ofobject
oriented programmingThe approach adopted by this paradigoonsisted in representing the reality with sonrtitiea
(definied classes) containing both the data strestand the procedures (definied methods) thattpabove; when a
program created an element of a class it activateabject and different objects could communicat®rg them
through messages. The basis of this theory derowa ttudies of Dahl and Nygaard on the languagelUIA™ and
they conducted to the diffusion of different objedented languages such as Smalltalk, C++, SQLArsd

The object oriented programming has been ableddyme a substantial improvement in the activitgefelopment of
the code, but such improvement has happened withcagase of the level of complexity of the samde;since every
single part of the problem had to be defined incize way, it was necessary to manage languagesawitt of
opportunities. To find enough programmers able rofifably use these languages constituted for a lbme the
greatest obstacle to the diffusion of this motl¢ith the new millennium the complexity of the prebis to be faced
increased following the new requisite determinedhgyconsolidation of the web paradigm: substdgttake code was
expected to be able to operate moving itself onoddwnet, that it had to integrate heterogenousrenments and
hardwares and that could not guarantee the spekttharypical reliability of a LAN.

To solve these problems a new class of languages praposed for the software dynamic developmeriinet
dynamicdanguagesto which some new methodologies of developmentshatere placed side by side, knowragde
methodologies.

The introduction of Java constituted a typical eglrof language able to supply support to theseatelsr Necessity
to produce software that could operate on hetemgeplatforms hardware, was reached particularlghasizing the
principle of separation among the code and thevam that performed it through the introductiontied concept of
virtual machine on every type of hardware a particular versiornhef virtual machine was obviously necessary tut, i
present, hardware various could execute the sade co

The used technique required that every class @va ffrogram was individually compiled producingydebode; in
execution time, therefore to run-time, the virtoachine would have loaded the necessgtgcodesnd, if required, it

-4 -

Configurative Programming

would also have performed them on different comutéhis technique resulted extremely profitablehbim the
multilevel architectures typical of the corporatevieonments and in the solutions that use the wabd a model of
reference.

More recently the objective of a further reductiminthe level of complexity of the languages hascrated to the
introduction of the concept @omain Specific LanguagégDSL): for this new concept different definitions haveen
proposed, generally united by the idea that the ©8le languages clearly dedicated to the resolufomarticular
problems of specific application domains.

The primary goal of the DSL aimed to reduce thesting distance between the problem and the codd, s
achieved simplifying the structure of the languéita stretches to model itself on a specific cte#fgsroblems. In some
circumstances the specialization of the languageatiawed to directly submit its management to élperts of the
application domain; for this reason these langudmssome known as languages for not-programmermsndruser
languages:for example the macro language of the spreadshibet¢HHTML, the syntactic specifications through BN
the SQL.

The objective of a greater dynamism has also baesupd for the process of software development hasbeen made
simpler and light, introducing new methodologicabdels definedagile™ (agile methodologiesr lightweight
methodologieswhose purpose was to supply models of referehae donstituted a reasonable compromise in the
choice between code development without using ndetlogies of development (with the risk of the chaosl the
absence of results) and code development usingregty rigid and heavy methodologies (with the $lobtaining a
different software from what the customers expécted

These methodologi€shave accepted the fact that reality is in contirsuevolution, therefore every problem must be
faced with an adaptive approach and not a prediaiie: it is necessary to adapt dynamically tor¢ladity and not to
try to plan what could happen. Besides agile meailogy is directed towards the team of development ot towards
the process; if the focus of the traditional methilodies aimed to define trials without taking iraocount of the
development team that would have automatized theth,the agile methodology express it is demandeslpport the
activity of the development team. In particular #im@lity to develop progressively the code contunsly, testing it and
eventually rethinking about the choices made, tyoiseconnected to the adaptive ability of the depenent team that
will have to contain not only programmers and infation technologies experts, but also the buydwt is the
customers of the demanded software.

Among the different methodologies agile propostile, most important has been tEetreme Programming (XP) of
particular interest for the great emphasis it giteethe concept of the test. If the test activiys lalways been a phase
previewed by all the processes of software devedoyirim the XP the test assumes a crucial rolepthgrammer will
have to write the tests that will verify the codesie before writing the same code. This approacbngtly directed to
the test, is generally become knowrtesgt-first.

The attempt to simplify the activity of softwarevadopment has also been the objective pursued éygémeral
purpose languagesr GPL, primarily through the adoption of visual or gragah tools. To the programmer these
languages have supplied an integrated visual emviemt of development (IDE) that allowed to shapeapid way the
graphical user interfaces of the consumers (fomdsgtext box, button, etc.) integrating them wtitle code written by
the programmer. These languages have simplified ptfodblem of managing object oriented classes hibies
supplying some special visual tools; they allowedi¢velop code assembling and adapting some compsoiwares
seed-worked purchasable on the market or availablee world open-source; they have facilitated déloeess to the
documentation and the help supplying mechanisntsfaleditate the creation and the use of availak®ources on the
web. The following evolutions of Visual Basic, S@¥indows, Delphi, are examples of these languages.

The introduction of theMicrosoft. NET Frameworlkcaused a wider diffusion of these solutions camogr an
additional component to the operating system tlaatdllowed to have an integrated platform for theetbpment of
service oriented applications directed able to alperate in operational environments in which trebplays a
primary role. Of particular interest has been titeoduction, also in this context, of the concefpthe virtual machine
already discussed for Java, implemented throughigsheof theCommon Language Runtinf@LR).

The. NET Framework also allowed to abstract thglage used for the development: a programmer hexs digle to
already use a language known by him, select amoogetadherent to the specifications of the. NETmErgork, to
write code and to produce the version compiledtfe CLR. C #, Visual Basic. NET, J #, ASP.NET, DeIg,

DotLisps, are all examples of such languages.

iv. The applet is a typical example of single partade that a web server sends to the remote clenéslocal execution.

-5-

Configurative Programming

Even if the termis used in not uniform way, the languages of #st §ieneration sometimes were knowd@s or fifth
generation languages.

Il - Our opinion around the opportunity of a new programming paradigm

In the preceding section we have shortly summariedevolutionary footsteps made by the softwateatvdescribed
put in evidence as the development process has dmestantly influenced by the need simplifying the activity of
realization and maintenance of the code.

This requirement has been pursued through the itlefinof several paradigms from which different depment
methodologies and multiple programming languages derived. The mutual existing relationship between
methodologies and languages is for a long timeablgéattention; particularly if we consider the tih@dology as the
implementation of a specific model among those psep for improving the processes of software deratmt.

Even if there are cases in which the languages hatieipated a methodology, usually the times afleton of the
methodologies are quicker than the languages sitmpdause they are studied by more people; in faetatively few
individuals are interested in the programming laaggs (a subset of which much interested in the atenscience),
the methodologies that improve the developmentge®a@re object of ampler searches because these desin the
application to the software of the more generabtigs of the management on the improvement of tioelyztion
process.

This relation between process and language caxpressed by the measure of the complexity degheefigure 1°
puts the evolution of the complexity in relatiorshiith the language and the methodology.

The course of the graph
Bl underlines what already

discussed; the simplification is
a requirement commonly
perceived that already it has
been attempted to obtain; in
effect the last models
proposals have already lead to
the definition of
methodologies and languages
that aim to reduce the problem
of the complexity.

Complexity
of the process.

..... But we think that an further

TR P Vit T Sharneed] Tobeckonunedt G step towards the reduction of
languages : : languages : : languages : : languages : : minglanguages : the compIeX|ty can happen

esrrsssssmmssEEEssE SessssssassemassEmass Semsssssassssssassssn Ssmsessssssssssesssss heswsssesssvessssemass + . .
» Model ONly introducing new models

of reference that allow to

wi:’he:L?tlT:';:ﬁ::tlar o?:sotrcalg'e:'ni‘llf;ie Waterfall, “V* Incrgmental. Agile " deflne meth0d0|ogles and
rules development SRirALL.. [etaneolouss languages effectively simpler;

but which can be the levers on
which acting in order to
complete this new
evolutionary leap towards the

Fig. 1 — evolution of the complexity in relationship withetftanguage and the methodology

increase of the simplicity?

We believe that an answer to this question cambed travelling over again the evolution procestheflanguages and
the models discussed in the first part of thistiseain particular dedicating greater attentiorthie languages rather
than to the development methodologies. In fact B&pee induces us to affirm that a valid methodmalgsupport
succeeds in exalting the effectiveness of a langmg any methodology, however valid, can makeptitentials of a
specific programming language meaningfully evolwedrds a superior level.

v Some authors consider these characteristicslreatly satisfied since 4GL intending the 5GL as4B& evolution towards the use of the bases
of knowledge.

Configurative Programming

evolutions of the languages Figure 2 puts in evidence, briefly, as the
4 evolution of the languages has happened

5GL - N . through the movement of their orientation;

[> human-oriented if the first languages were predominantly

4GL v v . . .
directed to the physical machine, the

task-oriented following generations have tried to move
3GL ‘::i'; towards the requirements of the computers

in order to approach more the human

2GL . . requirements. But if we analyze in detail

16GL :> machine-oriented what discussed previously on the so-called

- human-oriented languages, we find that
orientation of the languages " these languages have been nearer the

Fig. 2 — move of the focus of the languages during theifugianary trial requirements of the professmnals of the

computer science rather than to the
requirements of the generality of the human
beings.

In effects, also sharing the objectives that sor&&$have tried to pursue in the attempt to appreetend users to
the problems of the programming, we notice thag tias happened to the detriment of an excessivetied of the

general potentials of the languages that have besfined in specific application domains: in faloe thumber of the
potential users has been reduced inside to thetsxpfea single domain.

These considerations allow us to affirm tifa objective of the simplification of the language be reached only
defining some formalisms that allow to increasertbimber of individuals able to create new applicas software.

It is obvious that this objective is reached if are able to answer to the following question: “Whiharacteristics
must a programming language have to be definedls#fpTo find an answer to this question it is agaseful to
examine the salient characteristics of the prevgmrerations of programming languages.

In the first place we do not believe that the sifigation can be reached using formalisms that sugwolved
mechanisms of representation of the reality contbioea rich set of tools and commands to maniputatee history
of the object-oriented languages has clearly detratesl the validity of this approach, unfortunatélydemands
programmers with a remarkable experience.

On the other hand not even the use of formalisrg&édb abstracts allows to reach the objective: shee Turing
machine, as others you approfcto the theory of the computability, they have destmated that a set extremgly
reduced of data structures and instructions coeldiffused towards a vast group of individuals, @ifficultly using
them they could be realized the software usuakyg@nt on the market.

Equally little fruitful, for our objectives, als® has been the experience to make the expertedaigplication domains
participate to the definition of the languages18%9 the first version of the language COBGtame really defined by

a committee - “The Short Range Committee”- risenirotiative of the United States Government and iatune of
leaders of the primary public and private organisihthe epoch; the result has been a languagearfrenus success
because it supports in an extremely valid way ithenicial demands, administrative and of the busifiesfact COBOL

is the acronym of “COmmon Business Oriented LangUQagbut whose use has always been domain of the
programmers.

Therefore the last experience demonstrates asttdwm@ of the simplification of the languages candmly pursued
with not traditional approaches; our opinion istttfee configurative programmingonstitutes a new and meaningful
approach to reach this objective.

Computer science uses the véolconfigurein different circumstances, th@ambridge Advanced Learner's Dictonary
defines it as “to adjust something or change thatrots on a computer or other device so that it barnused in a
particular way”; in our vision it allows to attribazian ampler meaning to the term “to program”. Viééelve that the
expression “configurative programming” can exprasgew model of the software development based isndea:it is
possible to automatize an activity programming dcwaiator, in indirect way, through an execution g&oament
(present on the same calculator) that is opportynebnfigured using a predefined set of elementdements
manipulated through rules that permit their correse.

vi In particular we refer to that ideal machine,imed Unlimited Register Machine (URM), derived frahe studies of Stepherdson and Sturgis;
this machine is extremely simple because it usBsfour instructions and a single type of data tibued by an endless succession of registers.

-7 -

Configurative Programming

In the next section we will define with more préaisthis new programming model using some axiorssh@w this
new approach can be used in order to extend thencmity of the developers it will be object of dission of the
fourth section of this treatise.

lIl — The Configurative Programming

The “Configurative Programmirigis a new paradigm for the software developmeat thoesn't use formalisms and
tools typical of the traditional programming langes, but it adopts a new development model baseideoprinciple of
the configuration.

The axioms of the configurative programming areftil®wings:

1) we define Configured Applicatioh a whatever software realized through the modeltted configurative
programming

2) we define Execution Environmehtthe infrastructure dedicated to the execution eofgeneric configured
application

3) the execution environment has to allow the dgwelent, the distribution, the execution and theraxtion of
configured applications both on computer stand-@land on multilevel architectures composed by t¢atiots in
various way connected in public or private nets

4) a configured application is developed through &flocation and the configuration of the elemesugplied from
the execution environment

5) the elements supplied by the execution envirortrnen be composed, also repeatedly, to constitore complex
elements

6) the elements supplied by the execution envirortroan be configured in their own characteristiosthie actions
that can develop and in the events which will bgject during their life cycles

7) we define Data Sourcéthe data structure (es. file, database, knowldage) containing all the information that a
configured application can manipulate

8) the set of the configurations that constitut@afigured application is stored in a specific dedarce that we define
“Configurations Library

9) a configured application can access differetd daurces and it manipulates them through theexi&sysupplied by
the execution environment

10) the tools supplied by the execution environmenmanipulate the data sources have to be indepéeriden a
particular implementation of the data source

11) the execution environment allows to manipulatedbnfiguration library at the same manner in whigmipulates
the other data sources

12) the execution environment has to expose elenggdicated to the interaction between a configurgalieation
and another configured application and betweeméigired application and a specific software readizhrough a
traditional programming language.

From the emphasis that the various axioms set ®mahcept of configuration it is derived the idealéfine this new
model of programming as “Configurative Programmingle proceed, therefore, discussing about some rkebie
concepts that derive from the analysis of the agiom

We begin to underline that this model allows toalep the software through the configuration of géhements set to
disposition of the execution environment; sincis ithe execution environment that allows the progreer to compose
some instructions that automatize a certain agtivttis possible to assimilate the role of thisdabto that of a
programming language. In reality the exact rol¢hisf model is ampler; to understand we observdigiuge 3 recalling
some concepts already discussed above.

We first notice that this execution environment Haes ability to execute, at run-time, commandseiezd from who
programs it: therefore it is possible to consider particular type of interpreter.

The fact that the configuration happens on elemsupplied by a software layer present on the catoul a sort of
middleware that beside the mechanisms of accedheodata sources (database, file system, etc.)sespalso
commands to manipulate them, allows us to thinkitte@so the same aim as the CRL of Microsoft.

Configurative Programming

Il

Data source -
Configurations
library

The execution environment can be seen, by his
programmers, as an ideal machine with a similar
aim as the virtual machine of Java; in fact it is
possible that an application, realized according
to this development model, runs on different
families of calculators if every calculator has
versions dedicated of the execution environment
(versions that however must offer the same
environment to configure to the programmers).

Therefore we can think how all these
considerations are valid for a system in
compliance with the principles of the
configurative programming, for this reason it is
correct to consider it as elosed modelthat
includes:

1. the elements to be configured and the rules
to manipulate them

the mechanisms that allow the software to
be developed

3. the environment that performs the software.

Data source

Data source

3

Fig. 3 — description of the configurative model

Data source

Data source

Data source

=

+

Data source

N 2.

Then, we can consider this system as a ideal machiite to perform some programs that are develdgyethe

programmers and preserved in the configuratioratijprWhen the execution of a program is demandes,machine
will first load the necessary configuration fronetbonfiguration library, then it will use it to cligure a new machine
specifically dedicated to the execution of thisgyeon, finally it will execute the program activaginhe dedicated
machine; in execution time the dedicated machirne ingeract with its users receiving input, elabimgtdata and
producing output.

We immediately notice that this machine satisfies tequisite of the Von Neumann architecttréherefore it is

possible, on a certain point of view, to consideasi a concrete implementation of the universalnbumachine and to
affirm that it hascomputational poweanalogous to the same universal Turing machine.

The typical characteristic of the Von Neumann degtiure to treat data and programs in the same lwvagling both in
memory in execution time, finds a new applicatiaereary inside of the configurative programming. Whn a

traditional programming language the software igtem with formalisms and different tools by thasammonly used
for the data, in the configurative programming sloétware can be edited with the same mechanisnts fosehe data
and preserved on the same mass storages (datdibmsystems, etc.). The code generation procesguiskly in

comparison with the DSL and is not required to eanbra specific application domain.

Substantially the expressive power of these langsiagpnsidered like ability to face wide classeproblems, depends
on the implementation of the configurative prineigldopted. We think that a configurative languagealid if it
exposes the sufficiently wide mechanisms to cober tequirements standard of a single applicatiomaio or,
alternatively, of more application domains thatreha standard level of users; therefore, the codefinition of such
mechanisms becomes the focal point to develop&figomative language.

As the technique of the constructions teaches atsdtarting from a little set of initial materialtsis possible, using
them in sufficent quantities , to build small orga buildings, equally we think that it is possibiedefine a little set of
basic elements (the materials) and rules (the tqaka of construction) to manipulate them thatvalto face the
challenge of the automation processes.

Besides, we believe that this facility in the c@deation opens a new suggestive scenery in the/aeftdevelopment:
the model of configurative programming can becomextremely valid model to develop code in smadicess, for this
it favours an approach bo#iuaptiveandincremental.

In fact, if a professional programmer is able toefaand to develop an application through an apprdacsingle
footsteps, is also true that the consolidationwarg footstep asks effort, knowledge and abilityisfion that are not
verifiable in the generalities of the computer ssénstead the configurative programming allows: taot professional
programmer to really develop for single parts, lbseait allows to focus the attention on a spec@#pect and to try
immediately the effective operation without havitg realize a single module software in a completgy;wthis

Configurative Programming

possibility actually derives from the mechanisntofle realization that evolves from a process basdtie writing to a
process based on the configuration of the senstid elemengs supplied from the execution environment.

All that evidences as the configurative programmmg@articularly applicable with the most recenttineglologies of
software development: in fact the ability to sustan adaptive approach makes it coherent to timeiptés of the agile
methodologies. However this approach is also agple with success with the most traditional methogies,
because:

* It meaningfully supports the development processetan the spiral development methodology; in havehmit
allows, after every milestone, to simply and easilgdify big quantities of code modifying the configtion
already performed.

e Itis useful in the prototype model because itlf@tes the creation of the prototype and moredvedlows to
obtain various prototypes each usable in diffeexpierimental contexts.

» It satisfies the incremental model because the ddnfiear a software for single pieces to supply te tustomer
sequentially is easily applicable both in the prddin phase of the single pieces and in the didiob phase (it
will be enough to insert a new configuration in deafiguration library).

» It favours the orderly participation to the writipgocess of the configurations of the various pmogners that
work on the same project, therefore it improvesrdseilts gotten by the application of the basechoutlogies on
the models to V or waterfall.

The ability to successfully face the process otvsafe development and maintenance, using diffedentlopment

models, allows us to affirm that the configuratpregramming is validhdependentlyrom the used methodology.

A further interesting reflection derives from theadysis of the last axiom: the requisite to havefigurative languages
that interact with other traditional languagesiésitup to the opportunity not to consider the ogunfative model as a
“panacea” for all the demands to computerize. TdilwWing section will show that the possibilitie$fered by the

configurative model will be best manifested in doatexts in which the demands of vast communitiggroegrammers
will be satisfied; particularly we will see how tpushing this model to its extreme limit we would geme new
languages whose use would be more complex thatrdd#@ional languages: the 12° axiom preservesrams fsuch

degeneration because it allows the integratiorotifvere modules realized through the configurativedel with other

software modules developed with traditional langsag

IV — Principle of the orientation of the configurative programming

In the preceding sections we have discussed aridedethe model of the configurative programming, wi¢ now
examine as such model contributes to the incresbeocommunity of developers; particularly it wbke analyzed
because this approach simplifies the process tivacé development and maintenance.

The analysis of the axiomatic model evidences asbise of this new approach to the programming/eetaving
moved the focus of the programmer from a writingogiss to a configuration process; if such focus enwant
effectively simplifies the activity of software delepment or instead it makes it more complex dep@mdhow much it
succeeded to simplify the configuration process.

It is obvious that a extremely articulate configica process, based on many elements everyonegcwakile in
extremely meticulous way, will hardly conduct te thefinition of a simple programming language, ¢f@e it won't
allow the diffusion of it on a vast community ofogrammers. As the demand to simplify the mechanshsoftware
development is connected with the demand to simphi€ mechanisms to configure it is necessary fmelessome
configuration levels that can are easily understhfedand usable by different categories of usens demand pushes
us to affirm that the configurative programming dsnconsidered awriented to individuabnd therefore based on an
approachmore subjective that objective.

This consideration makes the assignment to defirgpexific configurative language extremely tirespranply

because various individuals have a different idéahe “simplicity” concept; for instance: a mathein&an could

consider easy the use of numerical models, a mipleer could privilege logical models, a manager lekqarobably
appreciate chart models. On the point of view efghogramming languages these different visionslavbe translated
in the creation of different development environtsenn our example the mathematician would probatiipose
functional languages, the philosopher towards kldanguages, the manager towards macro languaghksatied to the
manipulations of data charts.

vii Although these mechanisms are already preserprécedents development paradigms (objects orienisihg component, etc.), the
configurative programming extends to face them fadifferent points of view.

-10 -

Configurative Programming

Therefore we can assert that the implementatichetonfigurative programming paradigm can takegla different
forms: each directed towards different categoriésugers. In this sense we can define ttta configurative
programming constitutes an “Individual Oriented gramming.”

In order to define a language dedicated to a speaplication domain it is sufficient to definaeladicate configurative
programming language that is in a position to fatise requirements of a generic individual: areidepresentative of
this category of users. It is obvious that the sascof a such configurative language primarily w#pend on the
correct definition of this ideal individual, pamlarly having clear in mind its demands and operti ability,
secondarily, having defined configuration mechasishat a such individual will consider effectiveiynple.

Clearly, the attainment of this objective is theule of an empiric process based on the experieftieose who will
participate to the process of languages definitidre fact that human activities are manifold andréfore the
application contexts can be manifold too, each ameg by a plurality of single individuals, allows infer that the
processes of definition eventually undertaken cdeddl to the production of a big quantity of diffat languages that
could degenerate in a new linguistic confusion.

The attempt to avoid one such degeneration as agethe demand to define languages that, likewighdogeneral
purpose language, can be used in heterogeneousadjopl domains, therefore to meet the demandstanthvour of a
vast community of users, induces us to proposefaliewing definition: the “User Oriented Programming” is
constituted by all the implementations of the apnfative programming paradigm that has the objectio allow to a
generic end user to directly develop an own coméidwapplication.

Naturally also this definition is extremely amplada
contains aspects of subjectivity; for such reaseaswill
now discuss of some general principles of referghae
can lead to the correct definition of a programming
language directed to the users.

philosophers-
ariented

A configurative language must expose mechanisnie to
configured; in order to define the mechanisms that
programmer will be able to configure it is usefal t
establish the margins of the problem that is waielole
automated. As already discussed above, the 12¥maxio
guarantees that a configured application can operat
together with other applications developed with
traditional languages. This possibility allows osatvoid

to consider the configurative model as a panace#&to

automatization of all the possible activities; itakas

Fig. 4 — an ideal classification ofanguages oriented to different sense to use the configurative model only in theesan

categories of individuals which it produces of the effective benefits, baléjcin

the cases in which:

* The participation of more individuals, with heteemgus professional competences, to the activityredition and
maintenance of software application; for examptethe realization of control systems of managenfenthe
companies.

* In the situations in which the software distributionodel realized in configured way constitutes ratsgic
advantage for the producer of the software. Fomgka, a software house could consider advantageorealize
with the configured model only the application asftructure management (user’s profiles, MDI, me&ammand
bars, simple forms of date-entry, query on the ,dfatan to change password, support to reportingraion in
public and private nets, etc.) and to realize viiiditional languages specific modules that conticomplex
know-how or a know-how for which it is necessaryraater protection of the intellectual property.

* When the developers do not have the experiencescamgpetences required by the traditional progrargmin
languages; for instance, in the development ofieaidbns for school or home use.

* In general in the cases in which the use of thefigorative model allows to develop more simply cdete
applications or meaningful parts of theme.

In the other cases the use of the configurativeahbds to be valued in specific way to avoid thatapplication

becomes self-defeating; for instance in the casesghich the management of a configured applicatiecomes more

complex in comparison to an analogous applicateretbped with traditional programming languages.

These reflections remark that the set of comppriejects realized with the configurative programgare extremely

wide. Among the many possible fields of applicatwa believe that a meaningful interest will betie production of

software for personal use.

mathematicians-
oriented

physicists-
 orfented

-11 -

Configurative Programming

As a consequence of the general diffusion of thepder technologies the houses of hundreds ofanithf individuals
contain computational ability comparable to proi@sal contexts; the last years have seen an exfiah@rcrease of
the solutions software express realized and comalizexd for the home consumer; instead, the pddsdsi that a
single consumer can construct itself own applicetidhat satisfy its personal requirements did natreiase
meaningfully. We believe that the configurative rabdill allow us to reach such objective.

Besides we believe that this model will also
have a meaningful diffusion in the fields of the
organizations that already have information
systems. The figure 4 evidences the existence of
a considerable space of diffusion constituted by
those demands that traditional application
solutions manage with notable economic and
temporal investments, while the use of typical
tools of the office automations (for instance, the
spreadsheets) don't guarantee enough certainty
in the data management (the information is
) destructured).

Analysis

----- Business
v \\"*I\Pﬁﬁ‘?éfr%‘ﬁ

Ofice \
Automation
applications

We believe that the two examples discussed,
already expose with clarity the possibilities
offered by this model. In general we think that
| ! i ! | the configurative approach is extremely valid in
Fig. 5 — possible use of the model configuraivo in the oizstions all the realities where it is necessary to manage
in rapid and structural way the problem of the

software uncertainty.

In the first part of the treatise we have discusaieolut the approach held from the different methmgioal models in
facing the problem of the software uncertainty; shedies of Rittel and Weblétave shown as the reality is often
constituted bynalignant problemsr wicked problems.

In effects, the real problems are observed frontiplalpoints of view and with conflict levels of Gwledge,therefore
the software development, even if supported bydvaiethodologies, will hardly be totally in compl@nwith the
requirements of the customers.

In this sense the adoption of the programming guméitive, thanks to the intrinsic possibility taliee the software
through an adaptive approach, allows to rapidlyexirthe imperfections found: for this reason i t& considered a
winning approach in all those applications for whicshared definition of the problemdetween the actors who have
participated to the phase of analysis has not fmerd.

For these reasons we can assert that it is pogsiloensider the configurative approach as a \&didtion to solve the
problems that, from the watefdlimodel onwards, often has compromised the procedsasftware development and
maintenance.

V — The first language founded on the configurativgparadigm

In the preceding sections we have introduced asdudsed the configurative programming paradigmedimihg as
such theoretical model innovates the activity ef tbde development. At the end of this discussierthink it is useful
to shortly introduce the first configured programmianguage.

This experimental language, belonging to the ctdshe user oriented programming languages, has tesdized by
the authors of this treatise to accompany the wapof the new programming paradigm together witboacrete
implementation that shows the applicability in tle@al world of the proposed theoretical assertigkssit is not the
objective of this treatise to deepen the analy$isotutions software we will confine ourselves toderlining some
meaningful aspects.

We have seen that the objective of the user odeptegramming is to define programming mechanidms & generic
user finds simple. Such objective has primarilyrbparsued using visual interfaces for the inteaactvith the users
and secondarily basing the process of formulatfahe configurations filling up of the tables.

The choice of the visual interfaces has been miivavith the obvious ascertainment that these lcawnstituted the
lever that has allowed the diffusion of the comput®wards the generality of the human beingsebltt the tabular
representation has been adopted for the abilipptgugate the simplicity of use to the possibitityanalytically treat a
big quantity of data. In substance the basic idethe spreadsheet has been reconsidered and ehridhiirther

elements to support a more structured informatiamagement. As an example, the not professionakranuger will

viii The known and encoded problems, that is someloowrged by the applications, they are also knowtaras problems.

-12 -

Configurative Programming

be able to try ideas and suggestions in other egdins or documentary sources and to insert therthé own
applications simply using the techniques of thepic@nd paste”: undoubtedly a possibility to devetmgle which
appears very simple and suggestive.

From the requirement to use a rich graphic envimmtmalready used with simplicity by most indivithjat is derived
the choice to use an interface Windows Fdrmather than a browser (the use of the browser avalsio have required
further competences for the management of the stippiastructures).

Further element of interest is the technique chdserthe interaction with the sources given: inardo favour the
operation between computers interconnected on @uinits at a low speed the logic of data managerirent
disconnected mode has been preferred (even if more evolvedsusan use more traditional mechanisms for the
interaction with the DBs).

@ MCQARE Form

e ey Tl Permissions Tutorisl Console Actions Erp Profiles Finance: Assets Contract

tics Statistics Publishwnd Worldiands

Northy Cineteca Windows 7

The demand to allow the

] Mo desgrer ALTES HiebH @ o B 2R aBER c8E 2 . . .
Ewwmsm interaction with other
" Fom designer ALT-F1 . .
I e languages has been satisfied
2 I ousrs [| Ownken (G | Oomwsnee WA | s enriching the environment

[List of values designer ALTHF E Fomomas it fsale order} | Categoria: [cusTomeR |

e of an inside programming

% Codebulder I Fom dements | Destataric: [0 HOC s] e
EEE ‘ | language of traditional type;
=0 L e . .
Data valuts: [Fort e Jaron I [Fort [Fo [47100] an |mperat|Ve Ianguage
o [— I W expressly defined for not

Cortrovalore: Venditore: [200 " [Potter. Hice:

 Impiegati Worldlands

professional programmers:
with little effort, they would

have at least be in a position
£ Gous i to construct software small

Group Databases

and simple (naturally, the

‘ | gestione partte|
| scad.

Codice: Prodotio:
» BIALES Birra Ale Schuetz
|| PRl VallePeliopaigt

£=] informazioni societa | =) informaziori personaii || cumiculum |

matricola [[Wite, Augusta]

—— nome. [Augusta] fototessera del dpenderte
= rfomazoni general et |

|[F=) prezzi | (=) ubicazone | (=] giacenze |

‘ BEcorvsi| prodete [|Bima Light Schuetz posizione
fornitore [ADLER [ADLERERENNERE| SCHUETZ INH. | superioe

‘cognome

ot ;,w,s,i,a@ ‘] | professional programmers
G Gemaria v Ay | .

e et 1 =31 will be able to develop code
i T] s ‘ more complex).

The figure 6 is an example
of forms software realized
through the language
Fig. 6 — an example of forms realized with this new language shortly examined in this

section; we believe that this
image, alone, witnesses the validity of the sped¢#fhguage, but above all you underline the pdgsisi offered by the
new model of configurative programming to the pssfenal programmers and in general to whoever eesir be able
to autonomously develop an own application worlsnffware in an application domain of interest.

VI — Conclusions

In conclusion of this treatise we belive a positsenclusive judgment can be expressed on the tsalwh the
configurative programming paradigm. We believe thath paradigm, in its entirety, constitutes a neay to the
software development: it will allow to extend thengpetence of the code development towards widemaamties of
individuals, while the traditional actors of thefteare development will receive notable advantayssause they won't
have to deal themselves with all the connectedcispd the process of software development and texa@mce but
they can dedicate their own specialist competettse more strategic aspects.

It is obvious that the ability to introduce simpddtion is directly proportional to the ability tomplement the model
producing some languages with a reasonable levebwiplexity. To define these languages it is neanyssot to start
from the presupposition to use them in all the winstances, even with the collateral objective tpeéxthe

professionals of the software development fromathi®matization processes: who tried to define sul@mguage, also
in the cases in which he succeeded in the enterppi®bably he would obtain a new general purpasguage: a
language probably more complex than a traditionagiamming language.

Instead, it is reasonable to expect a simplificatio the management of these superstruciutest we also find in
software created for modest requirements of automarequirements that usually create real appboat more

complex than those demanded by the specific probbesmitomate.

iX Example of these demands, particularly presernhéncorporate environments, it is the compliaréhe various national and international
legislations (Systems of Quality, Data Protecti@omputer Security, etc.) and the requirement toaipen Internet; business requirements that
often demand complex infrastructures of suppoggrdated with flexible mechanisms to manage theésipeofiles, roles and software.

- 13 -

Configurative Programming

However, generally speaking, whoever uses softweakized with the paradigm of the configurative gnamming will

get benefits even in case an active participatiothe phases of code development and maintenanuet idesired.

Primarily the possibility to facilitate the code im@nance allows to hypothesize remarkable econamN@antages: if

the laws of Leham and Beladyemember us that every software, to be able iefgats own users in long run, must

be submitted to a periodic activity of updatingyesal studie$ have clearly shown how the software maintenance
absorbs a conspicuous part of the general costaised for them, even recéhtanalyses have underlined as this
percentage you sometimes overcome the 90% threshold

To the meaningful economic advantages the benefitstrategic nature must be added, derived by atgre

independencef the software realized with the configurative rabd

* The possibility to memorize the edited code equallyhich the data are memorized, make it easiqgiréserve
and transfer the know how contained in every sisgitware. Besides, the technical possibility toszdt and to
modify in every moment the source code will alldve tcustomer to contract more extensive licenceeaggats,
that can reach to guarantee the real maintenanteeadhtellectual ownership of the code developadeqguest
inside the organization of the customer, avoidingessive dependences from single programmers twaef
house.

« It will simplify the evolution of the applicatioria the long run: a new version of the environmernxecution, for
instance necessary for an updating of operatingesyscan be installed without necessarily modifyiihg
programs developed that they will stay unchangethénconfiguration library; at the same time a g®of the
configured applications, to replace obsolete contsamith others more advanced, can be carried ouh$tance
with simple commands of updating of the configunatiibrary.

* Aninteresting benefit will be obtained in all tleosontexts that need a lot of different applicagibut potentially
integrated (ERP, MRP, CRM, Human Resource, etee);possibility to construct these applications gsinsame
configuration environment, constituted by the sabasic elements, will allow to realize software eyss
normalized and standardized: then easiest usaldifeyent users.

« The configurative programming also allows to facgirely the matter of the legacy dilemm# with a new
approach: the code maintenance in the long rurhe@pen in less critical way both for the facilitydccess the
content of the same code, by itself originally arigad in an orderly and documented way, and forpibesibility
to adjust, or also to rewrite, the existing confegliapplications simply by modifying parts of thenfigurations
already realized.

Naturally the configurative programming does ndyanvolve benefits. We have already seen thdbis not have to
be considered like an applicable panacea in altitttemstances; in some circumstances its use cealdt superfluous
or even harmful. Particularly we believe that tlse wf the configurative model has to be valued \attention in the
softwares in which the algorithmic element prevailgomparison to the simple interaction with tlaed for instance,
in the software containingusiness rulegxtremely articulated and dedicated to single dosdn these cases, the use
of traditional languages, even limited to the depehent of specific modules to be inserted in anlamgystem
realized with the configurative model, could resuatire convenient.

Instead, it is generally probable that the configive programming will favour the diffusion of nepvoducts, new
techniques and new methodologies thanks to theprsalibility of participation of the final customir the process of
software development and maintenance.

X The organizations that have the requirement tdgimee to maintain working in the time the own syss legacy must face the following
dilemma: to restructure completely the systemsdgga continue to use them or to rewrite them wytio reproduce the same functionalities.

-14 -

Configurative Programming

References

© 00 N O O

11
12
13

14
15
16
17
18

19
20
21

22

23

24

25

26
27
28
29

30

A.M. Turing, On computable numbers, with an application to théseheidungsproblejrin “Proceeding of the
London Mathematical Society”, XLII (1936). LightsalA correction ibidem, XLIII, 1937.

A. Church,The Calculi of Lambda-Conversipm “Annals of Mathematics Studies”, n°6, Prinagtd@941.

W.W. Royce Managing the Development of Large Software Syt€uacepts and Techiniques “Proceeding of
the WESCON”, 1970.

C. Béhm e G. Jacopinklow Diagrams, Turing Machines, and Language withlyOTwo Formation Rulesn
“Communications of the ACM”, Vol. 9, n°5, 1966.

E.W. Dijkstra,Go To Statement Considered Harmfal“Communications of the ACM”, Vol. 11, n°3, 186

N. Wirth, Sistematisches Programmieréreubner Verlag, Stuttgart, 1972.

N. Wirth, Algorithms + data structures = programBrentice-Hall, 1976.

P.E. RookControlling software projectsn “IEEE Software Engireering Journal”, n°1, 1986

T. Gilb, Principles of Software Engineering Managemétdison-Wesley, 1988.

J.E. Urbansoftware Prototyping and Requirements Engineefmme Laboratory — DACS, 1992.

B. W. BoehmA Spiral Model of Software Development and EnhaecgtEEE Computer, Vol. 21, n°5, 1988.
B. StroustrupWhat is “Object-Oriented Programming”? (1991 revisedition) AT&T Bell Laboratories, 1991.

0.-J. Dahl e K. NygaardSIMULA- a language for programming and descriptioh discrete event systems,
introduction and user’'s manuaNorvegian Computing Center, 1965.

L. Walton,Domain-specific design languagd®996. URL: http://www.cse.ogi.edu/~walton/dsdish
Various AuthorsManifesto for Agile Software Developme2®01. URL: http://www.agilemanisfesto.org
M. Flower,The New Methodology2000. URL.: http://www.martinfowler.com/articles/nBlethodology.html
K. Beck,Extreme Programming Explained: Embrace Chamygdison-Wesley, 1999.

J. Richter,Microsoft .NET Framework Delivers the Platform fan Integrated, Service-Oriented WeldSDN
Magazine The Microsoft Journal for Developer, VI8, n°9, 2000.

G. Succil'’evoluzione dei linguaggi di programmazione: asaé prospettivein “Mondo Digitale”, n°4, 2003.
N.J. CutlandComputability: an introduction to recursive funcatitheory Cambridge University Press, 1980.

U.S. Department of Defens€OBOL, Initial Specifications for a Common Businég3sented Language
Government Printing Office, 1960.

J. Von Neumanrkirst Draft of a Report on the EDVA®Aoore School of Electrical Engineering, Univeysitf
Pennsylvania, 1945.

H. Rittel e M. WebberDilemmas in a general theory of plannjrig “Policy Sciences”, n°4, Elsevier Scientific
Publishing Company, 1973.

P. DeGrace e L. Hulet StaWicked Problems, Righteous Solutions: A Cataldgadern Engineering Paradigms
Prentice-Hall, 1990.

J. ProsiseWindows Forms: A Modern-Day Programming Model faitWg GUI Applications MSDN Magazine
The Microsoft Journal for Developer, Vol. 16, n2901.

D. SceppaMicrosoft ADO.NET (Core Referencé)icrosoft Press, 2002.
M. Lehman e L. Beladyrogram Evolution: Process of Software Changeademic Press, 1985.
J. KoskinenSoftware Maintenance Cosf003. URL: http://www.cs.jyu.fi/~koskinen/smcasisn

R.C. Seacord, D. Plakosh e G.A. LewMopdernizing Legacy Systems: Software Technolodiegiineering
Processes, and Business Practjokddison-Wesley, 2003.

K. BennettLegacy Systems: Coping with Suc¢c¢SEE Software, Vol. 12, n°1, 1995.

- 15 -

